Affiliation:
1. Rotman Research Institute, Baycrest, University of Toronto, Toronto, Canada
2. Institut de Neurosciences des Systemes, INSERM, Aix-Marseille Universite, Marseille, France
Abstract
The purpose of this paper is to describe a framework for the understanding of rules that govern how neural system dynamics are coordinated to produce behavior. The framework, structured flows on manifolds (SFM), posits that neural processes are flows depicting system interactions that occur on relatively low-dimension manifolds, which constrain possible functional configurations. Although this is a general framework, we focus on the application to brain disorders. We first explain the Epileptor, a phenomenological computational model showing fast and slow dynamics, but also a hidden repertoire whose expression is similar to refractory status epilepticus . We suggest that epilepsy represents an innate brain state whose potential may be realized only under certain circumstances. Conversely, deficits from damage or disease processes, such as stroke or dementia, may reflect both the disease process per se and the adaptation of the brain. SFM uniquely captures both scenarios. Finally, we link neuromodulation effects and switches in functional network configurations to fast and slow dynamics that coordinate the expression of SFM in the context of cognition. The tools to measure and model SFM already exist, giving researchers access to the dynamics of neural processes that support the concomitant dynamics of the cognitive and behavioral processes.
Subject
Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献