Computational approaches to treatment response prediction in major depression using brain activity and behavioral data: A systematic review

Author:

Karvelis Povilas1ORCID,Charlton Colleen E.1,Allohverdi Shona G.1,Bedford Peter1,Hauke Daniel J.123ORCID,Diaconescu Andreea O.1456ORCID

Affiliation:

1. Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada

2. Department of Psychiatry (UPK), University of Basel, Basel, Switzerland

3. Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland

4. University of Toronto, Department of Psychiatry, Toronto, ON, Canada

5. Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada

6. Department of Psychology, University of Toronto, Toronto, ON, Canada

Abstract

Abstract Major depressive disorder is a heterogeneous diagnostic category with multiple available treatments. With the goal of optimizing treatment selection, researchers are developing computational models that attempt to predict treatment response based on various pretreatment measures. In this paper, we review studies that use brain activity data to predict treatment response. Our aim is to highlight and clarify important methodological differences between various studies that relate to the incorporation of domain knowledge, specifically within two approaches delineated as data-driven and theory-driven. We argue that theory-driven generative modeling, which explicitly models information processing in the brain and thus can capture disease mechanisms, is a promising emerging approach that is only beginning to be utilized in treatment response prediction. The predictors extracted via such models could improve interpretability, which is critical for clinical decision-making. We also identify several methodological limitations across the reviewed studies and provide suggestions for addressing them. Namely, we consider problems with dichotomizing treatment outcomes, the importance of investigating more than one treatment in a given study for differential treatment response predictions, the need for a patient-centered approach for defining treatment outcomes, and finally, the use of internal and external validation methods for improving model generalizability.

Funder

Krembil Foundation

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

MIT Press

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3