Potential role of a ventral nerve cord central pattern generator in forward and backward locomotion in Caenorhabditis elegans

Author:

Olivares Erick O.1,Izquierdo Eduardo J.12ORCID,Beer Randall D.12

Affiliation:

1. Cognitive Science Program, Indiana University, Bloomington, IN, USA

2. School of Informatics and Computing, Bloomington, IN, USA

Abstract

C. elegans locomotes in an undulatory fashion, generating thrust by propagating dorsoventral bends along its body. Although central pattern generators (CPGs) are typically involved in animal locomotion, their presence in C. elegans has been questioned, mainly because there has been no evident circuit that supports intrinsic network oscillations. With a fully reconstructed connectome, the question of whether it is possible to have a CPG in the ventral nerve cord (VNC) of C. elegans can be answered through computational models. We modeled a repeating neural unit based on segmentation analysis of the connectome. We then used an evolutionary algorithm to determine the unknown physiological parameters of each neuron so as to match the features of the neural traces of the worm during forward and backward locomotion. We performed 1,000 evolutionary runs and consistently found configurations of the neural circuit that produced oscillations matching the main characteristic observed in experimental recordings. In addition to providing an existence proof for the possibility of a CPG in the VNC, we suggest a series of testable hypotheses about its operation. More generally, we show the feasibility and fruitfulness of a methodology to study behavior based on a connectome, in the absence of complete neurophysiological details.

Funder

Division of Information and Intelligent Systems

Publisher

MIT Press - Journals

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3