Structural connectome constrained graphical lasso for MEG partial coherence

Author:

Wodeyar Anirudh1234,Srinivasan Ramesh2

Affiliation:

1. Department of Cognitive Sciences, University of California, Irvine, California, USA

2. Department of Statistics, University of California, Irvine, California, USA

3. Department of Biomedical Engineering, University of California, Irvine, California, USA

4. Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA

Abstract

Abstract Structural connectivity provides the backbone for communication between neural populations. Since axonal transmission occurs on a millisecond time scale, measures of M/EEG functional connectivity sensitive to phase synchronization, such as coherence, are expected to reflect structural connectivity. We develop a model of MEG functional connectivity whose edges are constrained by the structural connectome. The edge strengths are defined by partial coherence, a measure of conditional dependence. We build a new method—the adaptive graphical lasso (AGL)—to fit the partial coherence to perform inference on the hypothesis that the structural connectome is reflected in MEG functional connectivity. In simulations, we demonstrate that the structural connectivity’s influence on the partial coherence can be inferred using the AGL. Further, we show that fitting the partial coherence is superior to alternative methods at recovering the structural connectome, even after the source localization estimates required to map MEG from sensors to the cortex. Finally, we show how partial coherence can be used to explore how distinct parts of the structural connectome contribute to MEG functional connectivity in different frequency bands. Partial coherence offers better estimates of the strength of direct functional connections and consequently a potentially better estimate of network structure.

Publisher

MIT Press

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

Reference79 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3