Trade-offs among cost, integration, and segregation in the human connectome

Author:

Ma Junji1,Chen Xitian1,Gu Yue1,Li Liangfang1,Lin Ying1,Dai Zhengjia12,

Affiliation:

1. Department of Psychology, Sun Yat-sen University, Guangzhou, China

2. Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China

Abstract

Abstract The human brain structural network is thought to be shaped by the optimal trade-off between cost and efficiency. However, most studies on this problem have focused on only the trade-off between cost and global efficiency (i.e., integration) and have overlooked the efficiency of segregated processing (i.e., segregation), which is essential for specialized information processing. Direct evidence on how trade-offs among cost, integration, and segregation shape the human brain network remains lacking. Here, adopting local efficiency and modularity as segregation factors, we used a multiobjective evolutionary algorithm to investigate this problem. We defined three trade-off models, which represented trade-offs between cost and integration (Dual-factor model), and trade-offs among cost, integration, and segregation (local efficiency or modularity; Tri-factor model), respectively. Among these, synthetic networks with optimal trade-off among cost, integration, and modularity (Tri-factor model [Q]) showed the best performance. They had a high recovery rate of structural connections and optimal performance in most network features, especially in segregated processing capacity and network robustness. Morphospace of this trade-off model could further capture the variation of individual behavioral/demographic characteristics in a domain-specific manner. Overall, our results highlight the importance of modularity in the formation of the human brain structural network and provide new insights into the original cost-efficiency trade-off hypothesis.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Fundamental Research Funds for the Central Universities

Publisher

MIT Press

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3