Elevating Understanding: Linking High-Altitude Hypoxia to Brain Aging Through EEG Functional Connectivity and Spectral Analyses

Author:

Coronel-Oliveros Carlos123ORCID,Medel Vicente145ORCID,Whitaker Grace Alma67ORCID,Astudillo Aland389ORCID,Gallagher David10,Zepeda-Rivero Lucía,Prado Pavel111,El-Deredy Wael68ORCID,Orio Patricio312ORCID,Weinstein Alejandro68ORCID

Affiliation:

1. Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile

2. Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California US and Trinity College Dublin, Ireland

3. Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile

4. Brain and Mind Centre, The University of Sydney, Sydney, Australia

5. Department of Neuroscience, Universidad de Chile, Santiago, Chile

6. Advanced Center for Electrical and Electronics Engineering (AC3E), Federico Santa María Technical University, Valparaíso, Chile

7. Chair of Acoustics and Haptics, Technische Universität Dresden, Dresden, Germany

8. Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile

9. NICM Health Research Institute, Western Sydney University, Penrith, New South Wales, Australia

10. School of Psychology, Liverpool John Moores University, England

11. Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile

12. Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile

Abstract

Abstract High-altitude hypoxia triggers brain function changes reminiscent of those in healthy aging and Alzheimer's disease, compromising cognition and executive functions. Our study sought to validate high-altitude hypoxia as a model for assessing brain activity disruptions akin to aging. We collected EEG data from sixteen healthy volunteers during acute high-altitude hypoxia (at 4000 masl) and at sea-level, focusing on relative changes in power and aperiodic slope of the EEG spectrum due to hypoxia. Additionally, we examined functional connectivity using wPLI, and functional segregation and integration in using graph theory tools. High altitude led to slower brain oscillations, i.e., increased δ and reduced α power, and flattened the 1/f aperiodic slope, indicating higher electrophysiological noise, akin to healthy aging. Notably, functional integration strengthened in the θ band, exhibiting unique topographical patterns at the subnetwork level, including increased frontocentral and reduced occipitoparietal integration. Moreover, we discovered significant correlations between subjects' age, 1/f slope, θ band integration, and observed robust effects of hypoxia after adjusting for age. Our findings shed light on how reduced oxygen levels at high-altitudes influence brain activity patterns resembling those in neurodegenerative disorders and aging, making high-altitude hypoxia a promising model for comprehending the brain in health and disease.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

MIT Press

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3