Path-dependent connectivity, not modularity, consistently predicts controllability of structural brain networks

Author:

Patankar Shubhankar P.1,Kim Jason Z.1,Pasqualetti Fabio2,Bassett Danielle S.13456ORCID

Affiliation:

1. Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA

2. Department of Mechanical Engineering, University of California, Riverside, CA USA

3. Department of Neuroscience, University of Pennsylvania, Philadelphia, PA USA

4. Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA USA

5. Department of Neurology, University of Pennsylvania, Philadelphia, PA USA

6. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA USA

Abstract

The human brain displays rich communication dynamics that are thought to be particularly well-reflected in its marked community structure. Yet, the precise relationship between community structure in structural brain networks and the communication dynamics that can emerge therefrom is not well understood. In addition to offering insight into the structure-function relationship of networked systems, such an understanding is a critical step toward the ability to manipulate the brain’s large-scale dynamical activity in a targeted manner. We investigate the role of community structure in the controllability of structural brain networks. At the region level, we find that certain network measures of community structure are sometimes statistically correlated with measures of linear controllability. However, we then demonstrate that this relationship depends on the distribution of network edge weights. We highlight the complexity of the relationship between community structure and controllability by performing numerical simulations using canonical graph models with varying mesoscale architectures and edge weight distributions. Finally, we demonstrate that weighted subgraph centrality, a measure rooted in the graph spectrum, and which captures higher order graph architecture, is a stronger and more consistent predictor of controllability. Our study contributes to an understanding of how the brain’s diverse mesoscale structure supports transient communication dynamics.

Funder

National Science Foundation

Publisher

MIT Press - Journals

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3