Weak coupling of neurons enables very high-frequency and ultra-fast oscillations through the interplay of synchronized phase-shifts

Author:

Přibylová Lenka1ORCID,Ševčík Jan1ORCID,Eclerová Veronika1ORCID,Klimeš Petr2,Brázdil Milan34ORCID,Meijer Hil5ORCID

Affiliation:

1. Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic

2. Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic

3. Brno Epilepsy Center, Dept. of Neurology, St. Anne‘s Univ. Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic, member of the ERN EpiCARE

4. Behavioral and Social Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic

5. Department of Applied Mathematics, Techmed Centre, University of Twente, Enschede, The Netherlands

Abstract

Abstract Recently, in the past decade, high-frequency oscillations (HFOs), very high-frequency oscillations (VHFOs), and ultra-fast oscillations (UFOs) were reported in epileptic patients with drug-resistant epilepsy. However, to this day, the physiological origin of these events has yet to be understood. Our study establishes a mathematical framework based on bifurcation theory for investigating the occurrence of VHFOs and UFOs in depth EEG signals of patients with focal epilepsy, focusing on the potential role of reduced connection strength between neurons in an epileptic focus. We demonstrate that synchronization of a weakly coupled network can generate very and ultra high-frequency signals detectable by nearby microelectrodes. In particular, we show that a bistability region enables the persistence of phase-shift synchronized clusters of neurons. This phenomenon is observed for different hippocampal neuron models, including Morris-Lecar, Destexhe-Paré, and an interneuron model. The mechanism seems to be robust for small coupling, and it also persists with random noise affecting the external current. Our findings suggest that weakened neuronal connections could contribute to the production of oscillations with frequencies above 1000Hz, which could advance our understanding of epilepsy pathology and potentially improve treatment strategies. However, further exploration of various coupling types and complex network models is needed.

Funder

Masarykova Univerzita

Grantová Agentura české Republiky

Publisher

MIT Press

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3