Affiliation:
1. Laboratory for Topology and Neuroscience, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Abstract
One of the paramount challenges in neuroscience is to understand the dynamics of individual neurons and how they give rise to network dynamics when interconnected. Historically, researchers have resorted to graph theory, statistics, and statistical mechanics to describe the spatiotemporal structure of such network dynamics. Our novel approach employs tools from algebraic topology to characterize the global properties of network structure and dynamics. We propose a method based on persistent homology to automatically classify network dynamics using topological features of spaces built from various spike train distances. We investigate the efficacy of our method by simulating activity in three small artificial neural networks with different sets of parameters, giving rise to dynamics that can be classified into four regimes. We then compute three measures of spike train similarity and use persistent homology to extract topological features that are fundamentally different from those used in traditional methods. Our results show that a machine learning classifier trained on these features can accurately predict the regime of the network it was trained on and also generalize to other networks that were not presented during training. Moreover, we demonstrate that using features extracted from multiple spike train distances systematically improves the performance of our method.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Subject
Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献