Affiliation:
1. Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
2. Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
Abstract
Abstract
Despite great progress in uncovering the complex connectivity patterns of the human brain over the last two decades, the field of connectomics still experiences a bias in its viewpoint of the cerebral cortex. Due to a lack of information regarding exact end points of fiber tracts inside cortical gray matter, the cortex is commonly reduced to a single homogenous unit. Concurrently, substantial developments have been made over the past decade in the use of relaxometry and particularly inversion recovery imaging for exploring the laminar microstructure of cortical gray matter. In recent years, these developments have culminated in an automated framework for cortical laminar composition analysis and visualization, followed by studies of cortical dyslamination in epilepsy patients and age-related differences in laminar composition in healthy subjects. This perspective summarizes the developments and remaining challenges of multi-T1 weighted imaging of cortical laminar substructure, the current limitations in structural connectomics, and the recent progress in integrating these fields into a new model-based subfield termed ‘laminar connectomics’. In the coming years, we predict an increased use of similar generalizable, data-driven models in connectomics with the purpose of integrating multimodal MRI datasets and providing a more nuanced and detailed characterization of brain connectivity.
Subject
Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献