Percolation may explain efficiency, robustness, and economy of the brain

Author:

Tian Yang12ORCID,Sun Pei1ORCID

Affiliation:

1. Department of Psychology and Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China

2. Laboratory of Advanced Computing and Storage, Central Research Institute, 2012 Laboratories, Huawei Technologies Co. Ltd., Beijing, China

Abstract

Abstract The brain consists of billions of neurons connected by ultra-dense synapses, showing remarkable efficiency, robust flexibility, and economy in information processing. It is generally believed that these advantageous properties are rooted in brain connectivity; however, direct evidence remains absent owing to technical limitations or theoretical vacancy. This research explores the origins of these properties in the largest yet brain connectome of the fruit fly. We reveal that functional connectivity formation in the brain can be explained by a percolation process controlled by synaptic excitation-inhibition (E/I) balance. By increasing the E/I balance gradually, we discover the emergence of these properties as byproducts of percolation transition when the E/I balance arrives at 3:7. As the E/I balance keeps increase, an optimal E/I balance 1:1 is unveiled to ensure these three properties simultaneously, consistent with previous in vitro experimental predictions. Once the E/I balance reaches over 3:2, an intrinsic limitation of these properties determined by static (anatomical) brain connectivity can be observed. Our work demonstrates that percolation, a universal characterization of critical phenomena and phase transitions, may serve as a window toward understanding the emergence of various brain properties.

Funder

Artificial and General Intelligence Research Program of Guo Qiang Research Institute at Tsinghua University

Publisher

MIT Press - Journals

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3