Core language brain network for fMRI language task used in clinical applications

Author:

Li Qiongge12ORCID,Ferraro Gino Del13,Pasquini Luca34,Peck Kyung K.35,Makse Hernán A.1,Holodny Andrei I.367

Affiliation:

1. Levich Institute and Physics Department, City College of New York, New York, USA

2. Physics Department, The Graduate Center of City University of New York, New York, USA

3. Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA

4. Neuroradiology Unit, NESMOS Department Sant’Andrea Hospital La Sapienza University, Rome, Italy

5. Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, USA

6. New York University School of Medicine, New York, USA

7. Neuroscience, Weill Medical College of Cornell University, New York, USA

Abstract

Functional magnetic resonance imaging (fMRI) is widely used in clinical applications to highlight brain areas involved in specific cognitive processes. Brain impairments, such as tumors, suppress the fMRI activation of the anatomical areas they invade and, thus, brain-damaged functional networks present missing links/areas of activation. The identification of the missing circuitry components is of crucial importance to estimate the damage extent. The study of functional networks associated with clinical tasks but performed by healthy individuals becomes, therefore, of paramount concern. These “healthy” networks can, indeed, be used as control networks for clinical studies. In this work we investigate the functional architecture of 20 healthy individuals performing a language task designed for clinical purposes. We unveil a common architecture persistent across all subjects under study, that we call “core” network, which involves Broca’s area, Wernicke’s area, the premotor area, and the pre-supplementary motor area. We study the connectivity of this circuitry by using the k-core centrality measure, and we find that three of these areas belong to the most robust structure of the functional language network for the specific task under study. Our results provide useful insights on primarily important functional connections.

Funder

National Institutes of Health

National Science Foundation

Italian Scientists and Scholars in North America Foundation

European society of radiology

City University of New York

Publisher

MIT Press - Journals

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3