Detecting modular brain states in rest and task

Author:

Kabbara Aya123,Khalil Mohamad13,O’Neill Georges4,Dujardin Kathy56,El Traboulsi Youssof7,Wendling Fabrice2,Hassan Mahmoud2

Affiliation:

1. Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Beirut, Lebanon

2. University of Rennes, LTSI - U1099, Rennes, France

3. CRSI Lab, Engineering Faculty, Lebanese University, Beirut, Lebanon

4. Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom

5. INSERM, U1171, Lille, France

6. CHU Lille, Neurology and Movement Disorders Department, Lille, France

7. LaMA-Liban, Lebanese University, Tripoli, Lebanon

Abstract

The human brain is a dynamic networked system that continually reconfigures its functional connectivity patterns over time. Thus, developing approaches able to adequately detect fast brain dynamics is critical. Of particular interest are the methods that analyze the modular structure of brain networks, that is, the presence of clusters of regions that are densely interconnected. In this paper, we propose a novel framework to identify fast modular states that dynamically fluctuate over time during rest and task. We started by demonstrating the feasibility and relevance of this framework using simulated data. Compared with other methods, our algorithm was able to identify the simulated networks with high temporal and spatial accuracies. We further applied the proposed framework on MEG data recorded during a finger movement task, identifying modular states linking somatosensory and primary motor regions. The algorithm was also performed on dense-EEG data recorded during a picture naming task, revealing the subsecond transition between several modular states that relate to visual processing, semantic processing, and language. Next, we tested our method on a dataset of resting-state dense-EEG signals recorded from 124 patients with Parkinson’s disease. Results disclosed brain modular states that differentiate cognitively intact patients, patients with moderate cognitive deficits, and patients with severe cognitive deficits. Our new approach complements classical methods, offering a new way to track the brain modular states, in healthy subjects and patients, on an adequate task-specific timescale.

Funder

Rennes university hospital

National Council for Scientific Research

Medical Research Council

Hopital de rennes1

Publisher

MIT Press - Journals

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3