Models of communication and control for brain networks: distinctions, convergence, and future outlook

Author:

Srivastava Pragya1,Nozari Erfan2,Kim Jason Z.1,Ju Harang3,Zhou Dale3,Becker Cassiano1,Pasqualetti Fabio4,Pappas George J.2,Bassett Danielle S.12567ORCID

Affiliation:

1. Department of Bioengineering, University of Pennsylvania, Philadelphia, PA USA

2. Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA USA

3. Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA

4. Department of Mechanical Engineering, University of California, Riverside, CA USA

5. Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA USA

6. Department of Neurology, University of Pennsylvania, Philadelphia, PA USA

7. Department of Psychiatry, University of Pennsylvania, Philadelphia, PA USA

Abstract

Recent advances in computational models of signal propagation and routing in the human brain have underscored the critical role of white-matter structure. A complementary approach has utilized the framework of network control theory to better understand how white matter constrains the manner in which a region or set of regions can direct or control the activity of other regions. Despite the potential for both of these approaches to enhance our understanding of the role of network structure in brain function, little work has sought to understand the relations between them. Here, we seek to explicitly bridge computational models of communication and principles of network control in a conceptual review of the current literature. By drawing comparisons between communication and control models in terms of the level of abstraction, the dynamical complexity, the dependence on network attributes, and the interplay of multiple spatiotemporal scales, we highlight the convergence of and distinctions between the two frameworks. Based on the understanding of the intertwined nature of communication and control in human brain networks, this work provides an integrative perspective for the field and outlines exciting directions for future work.

Funder

National Science Foundation

Publisher

MIT Press - Journals

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3