Nonparametric Modeling of Neural Point Processes via Stochastic Gradient Boosting Regression

Author:

Truccolo Wilson,Donoghue John P.1

Affiliation:

1. Neuroscience Department, Brown University, Providence, RI 02912, U.S.A.,

Abstract

Statistical nonparametric modeling tools that enable the discovery and approximation of functional forms (e.g., tuning functions) relating neural spiking activity to relevant covariates are desirable tools in neuroscience. In this article, we show how stochastic gradient boosting regression can be successfully extended to the modeling of spiking activity data while preserving their point process nature, thus providing a robust nonparametric modeling tool. We formulate stochastic gradient boosting in terms of approximating the conditional intensity function of a point process in discrete time and use the standard likelihood of the process to derive the loss function for the approximation problem. To illustrate the approach, we apply the algorithm to the modeling of primary motor and parietal spiking activity as a function of spiking history and kinematics during a two-dimensional reaching task. Model selection, goodness of fit via the time rescaling theorem, model interpretation via partial dependence plots, ranking of covariates according to their relative importance, and prediction of peri-event time histograms are illustrated and discussed. Additionally, we use the tenfold cross-validated log likelihood of the modeled neural processes (67 cells) to compare the performance of gradient boosting regression to two alternative approaches: standard generalized linear models (GLMs) and Bayesian P-splines with Markov chain Monte Carlo (MCMC) sampling. In our data set, gradient boosting outperformed both Bayesian P-splines (in approximately 90% of the cells) and GLMs (100%). Because of its good performance and computational efficiency, we propose stochastic gradient boosting regression as an off-the-shelf nonparametric tool for initial analyses of large neural data sets (e.g., more than 50 cells; more than 105samples per cell) with corresponding multidimensional covariate spaces (e.g., more than four covariates). In the cases where a functional form might be amenable to a more compact representation, gradient boosting might also lead to the discovery of simpler, parametric models.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3