GABA Transporter Preserving Ongoing Spontaneous Neuronal Activity at Firing Subthreshold

Author:

Hoshino Osamu1

Affiliation:

1. Department of Intelligent Systems Engineering, Ibaraki University, Hitachi, Ibaraki, 316-8511 Japan

Abstract

There has been compelling evidence that the GABA transporter is crucial not only for removing gamma-aminobutyric acid (GABA) from but also releasing it into extracellular space, thereby clamping ambient GABA (GABA in extracellular space) at a certain level. The ambient GABA is known to activate extrasynaptic GABA receptors and provide tonic inhibitory current into neurons. We investigated how the transporter regulates the level of ambient GABA, mediates tonic neuronal inhibition, and influences ongoing spontaneous neuronal activity. A cortical neural network model is proposed in which GABA transporters on lateral (L) and feedback (F) inhibitory (GABAergic) interneurons are functionally made. Principal (P) cell assemblies participate in expressing information about elemental sensory features. At membrane potentials below the reversal potential, there is net influx of GABA, whereas at membrane potentials above the reversal potential, there is net efflux of GABA. Through this transport mechanism, ambient GABA concentration is kept within a submicromolar range during an ongoing spontaneous neuronal activity time period. Here we show that the GABA transporter on L cells regulates the overall level of ambient GABA across cell assemblies, and that on F cells it does so within individual cell assemblies. This combinatorial regulation of ambient GABA allows P cells to oscillate near firing threshold during the ongoing time period, thereby reducing their reaction time to externally applied stimuli. We suggest that the GABA transporter, with its forward and reverse transport mechanism, could regulate the ambient GABA. This transporter-mediated ambient GABA regulation may contribute to establishing an ongoing subthreshold neuronal state by which the network can respond rapidly to subsequent sensory input.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3