Affiliation:
1. Gatsby Computational Neuroscience Unit, University College London, London, WC1N 3AR, U.K.,
Abstract
The brain extracts useful features from a maelstrom of sensory information, and a fundamental goal of theoretical neuroscience is to work out how it does so. One proposed feature extraction strategy is motivated by the observation that the meaning of sensory data, such as the identity of a moving visual object, is often more persistent than the activation of any single sensory receptor. This notion is embodied in the slow feature analysis (SFA) algorithm, which uses “slowness” as a heuristic by which to extract semantic information from multidimensional time series. Here, we develop a probabilistic interpretation of this algorithm, showing that inference and learning in the limiting case of a suitable probabilistic model yield exactly the results of SFA. Similar equivalences have proved useful in interpreting and extending comparable algorithms such as independent component analysis. For SFA, we use the equivalent probabilistic model as a conceptual springboard with which to motivate several novel extensions to the algorithm.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献