Precise Capacity Analysis in Binary Networks with Multiple Coding Level Inputs

Author:

Amit Yali1,Huang Yibi2

Affiliation:

1. Departments of Statistics and Computer Science, University of Chicago, Chicago, IL 60637, U.S.A.

2. Department of Statistics, University of Chicago, Chicago, IL 60637, U.S.A.

Abstract

We compute retrieval probabilities as a function of pattern age for networks with binary neurons and synapses updated with the simple Hebbian learning model studied in Amit and Fusi ( 1994 ). The analysis depends on choosing a neural threshold that enables patterns to stabilize in the neural dynamics. In contrast to most earlier work, where selective neurons for each pattern are drawn independently with fixed probability f, here we analyze the situation where f is drawn from some distribution on a range of coding levels. In order to set a workable threshold in this setting, it is necessary to introduce a simple inhibition in the neural dynamics whose magnitude depends on the total activity of the network. Proper choice of the threshold depends on the value of the covariances between the synapses for which we provide an explicit formula. Retrieval probabilities depend on the distribution of the fields induced by a learned pattern. We show that the field induced by the first learned pattern evolves as a Markov chain during subsequent learning epochs, leading to a recursive formula for the distribution. Alternatively, the distribution can be computed using a normal approximation, which involves the value of the synaptic covariances. Capacity is computed as the sum of the retrival probabilities over all ages. We show through simulation that the chosen threshold enables retrieval with asynchronous dynamics even in the presence of significant noise in the initial state of the pattern. The computed probabilities with both methods are shown to be very close to probabilities estimated from simulation. The analysis is extended to randomly connected networks.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3