Outliers Detection in Multivariate Time Series by Independent Component Analysis

Author:

Baragona Roberto1,Battaglia Francesco2

Affiliation:

1. Dipartimento di Sociologia e Comunicazione, Università di Roma “La Sapienza,” 00198 Roma, Italy

2. Dipartimento di Statistica, Probabilità e Statistiche Applicate, Università di Roma “La Sapienza,” 00100 Roma, Italy

Abstract

In multivariate time series, outlying data may be often observed that do not fit the common pattern. Occurrences of outliers are unpredictable events that may severely distort the analysis of the multivariate time series. For instance, model building, seasonality assessment, and forecasting may be seriously affected by undetected outliers. The structure dependence of the multivariate time series gives rise to the well-known smearing and masking phenomena that prevent using most outliers' identification techniques. It may be noticed, however, that a convenient way for representing multiple outliers consists of superimposing a deterministic disturbance to a gaussian multivariate time series. Then outliers may be modeled as nongaussian time series components. Independent component analysis is a recently developed tool that is likely to be able to extract possible outlier patterns. In practice, independent component analysis may be used to analyze multivariate observable time series and separate regular and outlying unobservable components. In the factor models framework too, it is shown that independent component analysis is a useful tool for detection of outliers in multivariate time series. Some algorithms that perform independent component analysis are compared. It has been found that all algorithms are effective in detecting various types of outliers, such as patches, level shifts, and isolated outliers, even at the beginning or the end of the stretch of observations. Also, there is no appreciable difference in the ability of different algorithms to display the outlying observations pattern.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3