Estimation of Sparse Nonnegative Sources from Noisy Overcomplete Mixtures Using MAP

Author:

Caiafa Cesar F.1,Cichocki Andrzej2

Affiliation:

1. LABSP, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan, and Engineering Faculty, University of Buenos Aires, Buenos Aires, C1063ACV, Argentina

2. LABSP, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan, and Warsaw University of Technology, Warsaw 00-661, Poland, and Systems Research Institute, Polish Academy of Sciences, Warsaw 01-447, Poland

Abstract

In this letter, we propose a new algorithm for estimating sparse nonnegative sources from a set of noisy linear mixtures. In particular, we consider difficult situations with high noise levels and more sources than sensors (underdetermined case). We show that when sources are very sparse in time and overlapped at some locations, they can be recovered even with very low signal-to-noise ratio, and by using many fewer sensors than sources. A theoretical analysis based on Bayesian estimation tools is included showing strong connections with algorithms in related areas of research such as ICA, NMF, FOCUSS, and sparse representation of data with overcomplete dictionaries. Our algorithm uses a Bayesian approach by modeling sparse signals through mixed-state random variables. This new model for priors imposes ℓ0 norm-based sparsity. We start our analysis for the case of nonoverlapped sources (1-sparse), which allows us to simplify the search of the posterior maximum avoiding a combinatorial search. General algorithms for overlapped cases, such as 2-sparse and k-sparse sources, are derived by using the algorithm for 1-sparse signals recursively. Additionally, a combination of our MAP algorithm with the NN-KSVD algorithm is proposed for estimating the mixing matrix and the sources simultaneously in a real blind fashion. A complete set of simulation results is included showing the performance of our algorithm.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3