Dynamics of Learning Near Singularities in Layered Networks

Author:

Wei Haikun1,Zhang Jun2,Cousseau Florent3,Ozeki Tomoko4,Amari Shun-ichi5

Affiliation:

1. RIKEN Brain Science Institute, Saitama, 3510198, Japan, Southeast University, Nanjing, 210096, China, and Kyushu Institute of Technology, Kitakyushu 8080196, Japan.

2. RIKEN Brain Science Institute, Saitama, 3510198, Japan, and University of Michigan, Ann Arbor, MI 48109, U.S.A.

3. RIKEN Brain Science Institute, Saitama, 3510198, Japan, and University of Tokyo, Chiba, 2778561, Japan.

4. RIKEN Brain Science Institute, Saitama, 3510198, Japan, and Tokai University, Kanagawa, 2591292, Japan.

5. RIKEN Brain Science Institute, Saitama, 3510198, Japan.

Abstract

We explicitly analyze the trajectories of learning near singularities in hierarchical networks, such as multilayer perceptrons and radial basis function networks, which include permutation symmetry of hidden nodes, and show their general properties. Such symmetry induces singularities in their parameter space, where the Fisher information matrix degenerates and odd learning behaviors, especially the existence of plateaus in gradient descent learning, arise due to the geometric structure of singularity. We plot dynamic vector fields to demonstrate the universal trajectories of learning near singularities. The singularity induces two types of plateaus, the on-singularity plateau and the near-singularity plateau, depending on the stability of the singularity and the initial parameters of learning. The results presented in this letter are universally applicable to a wide class of hierarchical models. Detailed stability analysis of the dynamics of learning in radial basis function networks and multilayer perceptrons will be presented in separate work.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3