Affiliation:
1. EPS, Universidad Autónoma de Madrid, 28049 Madrid, Spain,
Abstract
A wide range of networks, including those with small-world topology, can be modeled by the connectivity ratio and randomness of the links. Both learning and attractor abilities of a neural network can be measured by the mutual information (MI) as a function of the load and the overlap between patterns and retrieval states. In this letter, we use MI to search for the optimal topology with regard to the storage and attractor properties of the network in an Amari-Hopfield model. We find that while an optimal storage implies an extremely diluted topology, a large basin of attraction leads to moderate levels of connectivity. This optimal topology is related to the clustering and path length of the network. We also build a diagram for the dynamical phases with random or local initial overlap and show that very diluted networks lose their attractor ability.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献