Multiplicative Updates for Nonnegative Quadratic Programming

Author:

Sha Fei1,Lin Yuanqing2,Saul Lawrence K.3,Lee Daniel D.2

Affiliation:

1. Computer Science Division, University of California, Berkeley, Berkeley, CA 94720, U.S.A.

2. Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.

3. Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, U.S.A.

Abstract

Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive multiplicative updates that improve the value of the objective function at each iteration and converge monotonically to the global minimum. The updates have a simple closed form and do not involve any heuristics or free parameters that must be tuned to ensure convergence. Despite their simplicity, they differ strikingly in form from other multiplicative updates used in machine learning. We provide complete proofs of convergence for these updates and describe their application to problems in signal processing and pattern recognition.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Roadmap on Label‐Free Super‐Resolution Imaging;Laser & Photonics Reviews;2023-10-30

2. Non‐negative Matrix Factorization;Source Separation in Physical‐Chemical Sensing;2023-10-13

3. Dual-graph regularized concept factorization for multi-view clustering;Expert Systems with Applications;2023-08

4. Reconstructing tephra fall deposits via ensemble-based data assimilation techniques;Geoscientific Model Development;2023-06-27

5. Variable selection and regularization via arbitrary rectangle-range generalized elastic net;Statistics and Computing;2023-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3