Normalization Enables Robust Validation of Disparity Estimates from Neural Populations

Author:

Tsang Eric K. C.1,Shi Bertram E.1

Affiliation:

1. Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

Abstract

Binocular fusion takes place over a limited region smaller than one degree of visual angle (Panum's fusional area), which is on the order of the range of preferred disparities measured in populations of disparity-tuned neurons in the visual cortex. However, the actual range of binocular disparities encountered in natural scenes extends over tens of degrees. This discrepancy suggests that there must be a mechanism for detecting whether the stimulus disparity is inside or outside the range of the preferred disparities in the population. Here, we compare the efficacy of several features derived from the population responses of phase-tuned disparity energy neurons in differentiating between in-range and out-of-range disparities. Interestingly, some features that might be appealing at first glance, such as the average activation across the population and the difference between the peak and average responses, actually perform poorly. On the other hand, normalizing the difference between the peak and average responses results in a reliable indicator. Using a probabilistic model of the population responses, we improve classification accuracy by combining multiple features. A decision rule that combines the normalized peak to average difference and the peak location significantly improves performance over decision rules based on either measure in isolation. In addition, classifiers using normalized difference are also robust to mismatch between the image statistics assumed by the model and the actual image statistics.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stimulating both eyes with matching stimuli enhances V1 responses;iScience;2022-05

2. Combining texture and stereo disparity cues for real-time face detection;Signal Processing: Image Communication;2013-10

3. Improved Binocular Vergence Control via a Neural Network That Maximizes an Internally Defined Reward;IEEE Transactions on Autonomous Mental Development;2011-09

4. Binocular vergence control using disparity energy neurons;Journal of Experimental & Theoretical Artificial Intelligence;2011-01-06

5. Modeling Stereopsis via Markov Random Field;Neural Computation;2010-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3