Affiliation:
1. Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
Abstract
A general methodology that involves geometric configuration of the network structure for studying multistability and multiperiodicity is developed. We consider a general class of nonautonomous neural networks with delays and various activation functions. A geometrical formulation that leads to a decomposition of the phase space into invariant regions is employed. We further derive criteria under which the n-neuron network admits 2n exponentially stable sets. In addition, we establish the existence of 2n exponentially stable almost periodic solutions for the system, when the connection strengths, time lags, and external bias are almost periodic functions of time, through applying the contraction mapping principle. Finally, three numerical simulations are presented to illustrate our theory.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献