Persistent Neural States: Stationary Localized Activity Patterns in Nonlinear Continuous n-Population, q-Dimensional Neural Networks

Author:

Faugeras Olivier1,Veltz Romain1,Grimbert François1

Affiliation:

1. INRIA/ENS/ENPC, Odyssée Team, Sophia-Antipolis 06902, France

Abstract

Neural continuum networks are an important aspect of the modeling of macroscopic parts of the cortex. Two classes of such networks are considered: voltage and activity based. In both cases, our networks contain an arbitrary number, n, of interacting neuron populations. Spatial nonsymmetric connectivity functions represent cortico-cortical, local connections, and external inputs represent nonlocal connections. Sigmoidal nonlinearities model the relationship between (average) membrane potential and activity. Departing from most of the previous work in this area, we do not assume the nonlinearity to be singular, that is, represented by the discontinuous Heaviside function. Another important difference from previous work is that we relax the assumption that the domain of definition where we study these networks is infinite, that is, equal to [Formula: see text] or [Formula: see text]. We explicitly consider the biologically more relevant case of a bounded subset Ω of [Formula: see text], a better model of a piece of cortex. The time behavior of these networks is described by systems of integro-differential equations. Using methods of functional analysis, we study the existence and uniqueness of a stationary (i.e., time-independent) solution of these equations in the case of a stationary input. These solutions can be seen as ‘persistent’; they are also sometimes called bumps. We show that under very mild assumptions on the connectivity functions and because we do not use the Heaviside function for the nonlinearities, such solutions always exist. We also give sufficient conditions on the connectivity functions for the solution to be absolutely stable, that is, independent of the initial state of the network. We then study the sensitivity of the solutions to variations of such parameters as the connectivity functions, the sigmoids, the external inputs, and, last but not least, the shape of the domain of existence Ω of the neural continuum networks. These theoretical results are illustrated and corroborated by a large number of numerical experiments in most of the cases 2 ⩽ n ⩽ 3, 2 ⩽ q ⩽ 3.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Mathematical Model of the Visual MacKay Effect;SIAM Journal on Applied Dynamical Systems;2024-08-01

2. Well-Posedness and Regularity of Solutions to Neural Field Problems with Dendritic Processing;Journal of Nonlinear Science;2024-06-15

3. Adaptive observer and control of spatiotemporal delayed neural fields;Systems & Control Letters;2024-04

4. Does the brain behave like a (complex) network? I. Dynamics;Physics of Life Reviews;2024-03

5. Functional architecture of M1 cells encoding movement direction;Journal of Computational Neuroscience;2023-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3