Affiliation:
1. Centre for Computational Neuroscience and Robotics (CCNR), Department of Informatics, University of Sussex, Brighton UK
2. Centre for Computational Neuroscience and Robotics (CCNR), Department of Biology, University of Sussex, Brighton UK
Abstract
Recent years have seen the discovery of freely diffusing gaseous neurotransmitters, such as nitric oxide (NO), in biological nervous systems. A type of artificial neural network (ANN) inspired by such gaseous signaling, the GasNet, has previously been shown to be more evolvable than traditional ANNs when used as an artificial nervous system in an evolutionary robotics setting, where evolvability means consistent speed to very good solutions—here, appropriate sensorimotor behavior-generating systems. We present two new versions of the GasNet, which take further inspiration from the properties of neuronal gaseous signaling. The plexus model is inspired by the extraordinary NO-producing cortical plexus structure of neural fibers and the properties of the diffusing NO signal it generates. The receptor model is inspired by the mediating action of neurotransmitter receptors. Both models are shown to significantly further improve evolvability. We describe a series of analyses suggesting that the reasons for the increase in evolvability are related to the flexible loose coupling of distinct signaling mechanisms, one “chemical” and one “electrical.”
Subject
Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献