Emergence of Cooperation: State of the Art

Author:

Nitschke Geoff1

Affiliation:

1. Computational Intelligence Group, Department of Computer Science, Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV, Amsterdam, The Netherlands,

Abstract

This review presents a review of prevalent results within research pertaining to emergent cooperation in biologically inspired artificial social systems. Results reviewed maintain particular reference to biologically inspired design principles, given that current mathematical and empirical tools have provided only a partial insight into elucidating mechanisms responsible for emergent cooperation, and then only in systems of an abstract nature. This review aims to provide an overview of important and disparate research contributions that investigate utilization of biologically inspired concepts such as emergence, evolution, and self-organization as a means of attaining cooperation in artificial social systems. An introduction and overview of emergent cooperation in artificial life is presented, followed by a survey of emergent cooperation in swarm-based systems, the pursuit-evasion domain, and RoboCup soccer. The final section draws conclusions regarding future directions of emergent cooperation as a problem-solving methodology that is potentially applicable in a wide range of problem domains. Within each of these sections and their respective themes of research, the mechanisms deemed to be responsible for emergent cooperation are elucidated and their key limitations highlighted. The review concludes that current studies in emergent cooperative behavior are limited by a lack of situated and embodied approaches, and by the research infancy of current biologically inspired design approaches. Despite these limiting factors, emergent cooperation maintains considerable future potential in a wide variety of application domains where systems composed of many interacting components must cooperatively perform unanticipated global tasks.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Graph Theory to Produce Emergent Behaviour in Agent-Based Systems;2023 IEEE Symposium Series on Computational Intelligence (SSCI);2023-12-05

2. A survey of the pursuit–evasion problem in swarm intelligence;Frontiers of Information Technology & Electronic Engineering;2023-08

3. Utilizing Complexity Theory and Complex Adaptive Systems in Global Business;Foreign Direct Investments;2020

4. Implicaciones de la estructura organizacional;Ingeniería Solidaria;2018-12-12

5. Utilizing Complexity Theory and Complex Adaptive Systems in Global Business;Advances in Religious and Cultural Studies;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3