A Shift-Invariant Latent Variable Model for Automatic Music Transcription

Author:

Benetos Emmanouil1,Dixon Simon1

Affiliation:

1. Centre for Digital Music, School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK. ,

Abstract

In this work, a probabilistic model for multiple-instrument automatic music transcription is proposed. The model extends the shift-invariant probabilistic latent component analysis method, which is used for spectrogram factorization. Proposed extensions support the use of multiple spectral templates per pitch and per instrument source, as well as a time-varying pitch contribution for each source. Thus, this method can effectively be used for multiple-instrument automatic transcription. In addition, the shift-invariant aspect of the method can be exploited for detecting tuning changes and frequency modulations, as well as for visualizing pitch content. For note tracking and smoothing, pitch-wise hidden Markov models are used. For training, pitch templates from eight orchestral instruments were extracted, covering their complete note range. The transcription system was tested on multiple-instrument polyphonic recordings from the RWC database, a Disklavier data set, and the MIREX 2007 multi-F0 data set. Results demonstrate that the proposed method outperforms leading approaches from the transcription literature, using several error metrics.

Publisher

MIT Press - Journals

Subject

Computer Science Applications,Music,Media Technology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3