A Set of FMRI Quality Control Tools in AFNI: Systematic, in-depth, and interactive QC with afni_proc.py and more

Author:

Taylor Paul A.1,Glen Daniel R.1,Chen Gang1,Cox Robert W.1,Hanayik Taylor2,Rorden Chris34,Nielson Dylan M.5,Rajendra Justin K.1,Reynolds Richard C.1

Affiliation:

1. Scientific and Statistical Computing Core, NIMH, NIH, Bethesda, MD, United States

2. Wellcome Centre for Integrative Neuroimaging, FMRIB, University of Oxford, Oxford, United Kingdom

3. Department of Psychology, University of South Carolina, Columbia, SC, United States

4. McCausland Center for Brain Imaging, University of South Carolina, Columbia, SC, United States

5. Machine Learning Team, NIMH, NIH, Bethesda, MD, United States

Abstract

Abstract Quality control (QC) assessment is a vital part of FMRI processing and analysis, and a typically underdiscussed aspect of reproducibility. This includes checking datasets at their very earliest stages (acquisition and conversion) through their processing steps (e.g., alignment and motion correction) to regression modeling (correct stimuli, no collinearity, valid fits, enough degrees of freedom, etc.) for each subject. There are a wide variety of features to verify throughout any single-subject processing pipeline, both quantitatively and qualitatively. We present several FMRI preprocessing QC features available in the AFNI toolbox, many of which are automatically generated by the pipeline-creation tool, afni_proc.py. These items include a modular HTML document that covers full single-subject processing from the raw data through statistical modeling, several review scripts in the results directory of processed data, and command line tools for identifying subjects with one or more quantitative properties across a group (such as triaging warnings, making exclusion criteria, or creating informational tables). The HTML itself contains several buttons that efficiently facilitate interactive investigations into the data, when deeper checks are needed beyond the systematic images. The pages are linkable, so that users can evaluate individual items across a group, for increased sensitivity to differences (e.g., in alignment or regression modeling images). Finally, the QC document contains rating buttons for each “QC block,” as well as comment fields for each, to facilitate both saving and sharing the evaluations. This increases the specificity of QC, as well as its shareability, as these files can be shared with others and potentially uploaded into repositories, promoting transparency and open science. We describe the features and applications of these QC tools for FMRI.

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3