Generative AI for rapid diffusion MRI with improved image quality, reliability, and generalizability

Author:

Sadikov Amir12,Pan Xinlei3,Choi Hannah1,Cai Lanya T.1,Mukherjee Pratik12

Affiliation:

1. Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States

2. Graduate Group in Bioengineering, University of California, San Francisco, CA, United States

3. University of California, Berkeley, CA, United States

Abstract

Abstract We use generative AI to enable rapid diffusion MRI (dMRI) with high fidelity, reproducibility, and generalizability across clinical and research settings. We employ a Swin UNEt Transformers (SWIN) model, trained on Human Connectome Project (HCP) data (n = 1021) and conditioned on registered T1 scans, to perform generalized dMRI denoising. We also qualitatively demonstrate super-resolution with artificially downsampled HCP data. Remarkably, SWIN can be fine-tuned for an out-of-domain dataset with a single example scan, as we demonstrate on dMRI of children with neurodevelopmental disorders (n = 40), adults with acute traumatic brain injury (n = 40), and adolescents with intracerebral hemorrhage due to vascular malformations undergoing resection (n = 8), each cohort scanned on different scanner models with different imaging protocols at different sites. This robustness to scan acquisition parameters, patient populations, scanner types, and sites eliminates the advantages of self-supervised methods over our fully supervised generative AI approach. We exceed current state-of-the-art denoising methods in accuracy and test–retest reliability of rapid diffusion tensor imaging (DTI) requiring only 90 seconds of scan time. SWIN denoising also achieves dramatic improvements over the state-of-the-art for test–retest reliability of intracellular volume fraction and free water fraction measurements and can remove heavy-tail noise, improving biophysical modeling fidelity. SWIN enables rapid diffusion MRI with unprecedented accuracy and reliability, especially at high diffusion weighting for probing biological tissues at microscopic spatial scales. The code and model are publicly available at https://github.com/ucsfncl/dmri-swin.

Publisher

MIT Press

Reference36 articles.

1. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging;Andersson;NeuroImage,2016

2. Robust segmentation of brain MRI in the wild with hierarchical CNNs and no retraining;Billot;Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),2022

3. MONAI: An open-source framework for deep learning in healthcare;Cardoso;ArXiv,2022

4. Quality assessment of high angular resolution diffusion imaging data using bootstrap on q-ball reconstruction;Cohen-Adad;Journal of Magnetic Resonance Imaging: JMRI,2011

5. Dehghani, M., Mustafa, B., Djolonga, J., Heek, J., Minderer, M., Caron, M., Steiner, A., Puigcerver, J., Geirhos, R., Alabdulmohsin, I., Oliver, A., Padlewski, P., Gritsenko, A., Lučić, M., & Houlsby, N. (2023). Patch n’ pack: NaViT, a vision transformer for any aspect ratio and resolution. ArXiv. https://doi.org/10.48550/arXiv.2307.06304

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3