Optimising the sensitivity of optically-pumped magnetometer magnetoencephalography to gamma band electrophysiological activity

Author:

Hill Ryan M.12,Schofield Holly12,Boto Elena12,Rier Lukas1,Osborne James3,Doyle Cody3,Worcester Frank2,Hayward Tyler2,Holmes Niall12,Bowtell Richard1,Shah Vishal3,Brookes Matthew J.12

Affiliation:

1. Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom

2. Cerca Magnetics Limited, Nottingham, United Kingdom

3. QuSpin, Inc., Louisville, Colorado, United States

Abstract

Abstract The measurement of electrophysiology is of critical importance to our understanding of brain function. However, current non-invasive measurements—electroencephalography (EEG) and magnetoencephalography (MEG)—have limited sensitivity, particularly compared to invasive recordings. Optically-Pumped Magnetometers (OPMs) are a new type of magnetic field sensor which ostensibly promise MEG systems with higher sensitivity; however, the noise floor of current OPMs remains high compared to cryogenic instrumentation and this limits the achievable signal-to-noise ratio of OPM-MEG recordings. Here, we investigate how sensor array design affects sensitivity, and whether judicious sensor placement could compensate for the higher noise floor. Through theoretical analyses, simulations, and experiments, we use a beamformer framework to show that increasing the total signal measured by an OPM array—either by increasing the number of sensors and channels, or by optimising the placement of those sensors—affords a linearly proportional increase in signal-to-noise ratio (SNR) following beamformer reconstruction. Our experimental measurements confirm this finding, showing that by changing sensor locations in a 90-channel array, we could increase the SNR of visual gamma oscillations from 4.8 to 10.5. Using a 180-channel optimised OPM-array, we capture broadband gamma oscillations induced by a naturalistic visual paradigm, with an SNR of 3; a value that compares favourably to similar measures made using conventional MEG. Our findings show how an OPM-MEG array can be optimised to measure brain electrophysiology with the highest possible sensitivity. This is important for the design of future OPM-based instrumentation.

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3