Removing scanner effects with a multivariate latent approach: A RELIEF for the ABCD imaging data?

Author:

Kraft Dominik1,Bon Gloria Matte12,Breton Édith3,Seidel Philipp14,Kaufmann Tobias134

Affiliation:

1. Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany

2. Department of Women’s and Children’s Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden

3. Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway

4. German Center for Mental Health (DZPG), partner site Tübingen, Tübingen, Germany

Abstract

Abstract Scan site harmonization is a crucial part of any neuroimaging analysis when data have been pooled across different study sites. Zhang and colleagues recently introduced the multivariate harmonization method RELIEF (REmoval of Latent Inter-scanner Effects through Factorization), aiming to remove explicit and latent scan site effects. Their initial validation in an adult sample showed superior performance compared to established methods. We here sought to investigate utility of RELIEF in harmonizing data from the Adolescent Brain and Cognitive Development (ABCD) study, a widely used resource for developmental brain imaging. We benchmarked RELIEF against unharmonized, ComBat, and CovBat harmonized data and investigated the impact of manufacturer type, sample size, and a narrow sample age range on harmonization performance. We found that in cases where sites with sufficiently large samples were harmonized, RELIEF outperformed other techniques, yet in cases where sites with very small samples were included there was substantial performance variation unique to RELIEF. Our results therefore highlight the need for careful quality control when harmonizing data sets with imbalanced samples like the ABCD cohort. Our comment alongside shared scripts may provide guidance for other scholars wanting to integrate best practices in their ABCD related work.

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3