Alpha-180 spin-echo-based line-scanning method for high-resolution laminar-specific fMRI in animals

Author:

Choi Sangcheon1,Hike David1,Pohmann Rolf2,Avdievich Nikolai2,Gomez-Cid Lidia1,Man Weitao1,Scheffler Klaus23,Yu Xin1

Affiliation:

1. Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States

2. Max Planck Institute for Biological Cybernetics, Tuebingen, Baden-Wuerttemberg, Germany

3. Department of Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Baden-Wuerttemberg, Germany

Abstract

Abstract Laminar-specific functional magnetic resonance imaging (fMRI) has been widely used to study circuit-specific neuronal activity by mapping spatiotemporal fMRI response patterns across cortical layers. Hemodynamic responses reflect indirect neuronal activity given the limitation of spatial and temporal resolution. Previously, a gradient-echo-based line-scanning fMRI (GELINE) method was proposed with high temporal (50 ms) and spatial (50 µm) resolution to better characterize the fMRI onset time across cortical layers by employing two saturation RF pulses. However, the imperfect RF saturation performance led to poor boundary definition of the reduced region of interest (ROI) and aliasing problems outside of the ROI. Here, we propose an α (alpha)-180 spin-echo-based line-scanning fMRI (SELINE) method in animals to resolve this issue by employing a refocusing 180˚ RF pulse perpendicular to the excitation slice (without any saturation RF pulse) and also achieve high spatiotemporal resolution. In contrast to GELINE signals which peaked at the superficial layer, we detected varied peaks of laminar-specific BOLD signals across deeper cortical layers using the SELINE method, indicating the well-defined exclusion of the large draining-vein effect using the spin-echo sequence. Furthermore, we applied the SELINE method with a 200 ms repetition time (TR) to sample the fast hemodynamic changes across cortical layers with a less draining vein effect. In summary, this SELINE method provides a novel acquisition scheme to identify microvascular-sensitive laminar-specific BOLD responses across cortical depth.

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3