Alpha peak frequency affects visual performance beyond temporal resolution

Author:

Menétrey Maëlan Q.1,Roinishvili Maya23,Chkonia Eka34,Herzog Michael H.1,Pascucci David1

Affiliation:

1. Laboratory of Psychophysics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

2. Laboratory of Vision Physiology, Ivane Beritashvili Centre of Experimental Biomedicine, Tbilisi, Georgia

3. Institute of Cognitive Neurosciences, Free University of Tbilisi, Tbilisi, Georgia

4. Department of Psychiatry, Tbilisi State Medical University (TSMU), Tbilisi, Georgia

Abstract

Abstract Recent work suggests that the individual alpha peak frequency (IAPF) reflects the temporal resolution of visual processing: individuals with higher IAPF can segregate stimuli at shorter intervals compared to those with lower IAPF. However, this evidence mainly comes from studies focusing on short intervals, with stimulus onset asynchronies (SOA) rarely extending beyond a single alpha cycle (e.g., ~100 ms). Here, we investigated the relationship between IAPF and performance in visual backward masking (VBM), which allowed us to test the effects of IAPF for longer SOAs than an alpha cycle. A group of healthy controls (N = 79) and schizophrenia patients (N = 121), who generally exhibit lower IAPF, were tested in conditions with a Vernier shown alone, a Vernier followed by a mask at two SOAs (30 and 150 ms), or only a mask. Our results show that IAPF can predict VBM performance in all conditions with a Vernier. Furthermore, in both the control and schizophrenia groups, individuals with higher IAPF showed reduced masking effects, even when the SOA of 150 ms exceeded the alpha cycle. These findings challenge the notion that IAPF is exclusively related to temporal resolution and visual processing within a single alpha cycle. We discuss alternative mechanisms by which IAPF determines visual performance.

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3