Frequency tagging of spatial attention using periliminal flickers

Author:

Ladouce Simon12,Dehais Frédéric13

Affiliation:

1. Human Factors and Neuroergonomics, Institut Superieur de l’Aeronautique et de l’Espace, Toulouse, France

2. Brain and Cognition & Leuven Brain Institute, KU Leuven, Leuven, Belgium

3. Biomedical Engineering, Drexel University, Philadelphia, PA, United States

Abstract

Abstract Steady-State Visually Evoked Potentials (SSVEPs) manifest as a sustained rhythmic activity that can be observed in surface electroencephalography (EEG) in response to periodic visual stimuli, commonly referred to as flickers. SSVEPs are widely used in fundamental cognitive neuroscience paradigms and Brain-Computer Interfaces (BCI) due to their robust and rapid onset. However, they have drawbacks related to the intrusive saliency of flickering visual stimuli, which may induce eye strain, cognitive fatigue, and biases in visual exploration. Previous findings highlighted the potential of altering features of flicker stimuli to improve user experience. In this study, we propose to reduce the amplitude modulation depth of flickering stimuli down to the individuals’ perceptual visibility threshold (periliminal) and below (subliminal). The stimulus amplitude modulation depth represents the contrast difference between the two alternating states of a flicker. A simple visual attention task where participants responded to the presentation of spatially cued target stimuli (left and right) was used to assess the validity of such periliminal and subliminal frequency-tagging probes to capture spatial attention. The left and right sides of the screen, where target stimuli were presented, were covered by large flickers (13 and 15 Hz, respectively). The amplitude modulation depth of these flickers was manipulated across three conditions: control, periliminal, and subliminal. The latter two levels of flickers amplitude modulation depth were defined through a perceptual visibility threshold protocol on a single-subject basis. Subjective feedback indicated that the use of periliminal and subliminal flickers substantially improved user experience. The present study demonstrates that periliminal and subliminal flickers evoked SSVEP responses that can be used to derive spatial attention in frequency-tagging paradigms. The single-trial classification of attended space (left versus right) based on SSVEP response reached an average accuracy of 81.1% for the periliminal and 58% for the subliminal conditions. These findings reveal the promises held by the application of inconspicuous flickers to both cognitive neuroscience research and BCI development.

Publisher

MIT Press

Reference85 articles.

1. Rapid Invisible Frequency Tagging (RIFT) in a novel setup with EEG;Arora;bioRxiv,2024

2. An objective signature for visual binding of face parts in the human brain;Boremanse;Journal of Vision,2013

3. Dissociation of part-based and integrated neural responses to faces by means of electroencephalo- graphic frequency tagging;Boremanse;European Journal of Neuroscience,2014

4. Application of rapid invisible frequency tagging for brain computer interfaces;Brickwedde;Journal of Neuroscience Methods,2022

5. Size matters: Effects of stimulus size, duration and eccentricity on the visual gamma-band response;Busch;Clinical Neurophysiology,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3