Investigating exchange, structural disorder, and restriction in gray matter via water and metabolites diffusivity and kurtosis time-dependence

Author:

Mougel Eloïse1,Valette Julien1,Palombo Marco23

Affiliation:

1. Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center (MIRCen), Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France

2. School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom

3. School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom

Abstract

Abstract Water diffusion-weighted MRI is a very powerful tool for probing tissue microstructure, but disentangling the contribution of compartment-specific structural disorder from cellular restriction and inter-compartment exchange remains an open challenge. In this work, we use diffusion-weighted MR spectroscopy (dMRS) of water and metabolite as a function of diffusion time in vivo in mouse gray matter to shed light on: i) which of these concomitant mechanisms (structural disorder, restriction, and exchange) dominates the MR measurements and ii) with which specific signature. We report the diffusion time-dependence of water with excellent SNR conditions as provided by dMRS, up to a very long diffusion time (500 ms). Water kurtosis decreases with increasing diffusion time, showing the concomitant influence of both structural disorder and exchange. However, despite the excellent experimental conditions, we were not able to clearly identify the nature of the structural disorder (i.e., 1D versus 2D/3D short-range disorder). Measurements of purely intracellular metabolites diffusion time-dependence (up to 500 ms) show opposite behavior to water, with metabolites kurtosis increasing as a function of diffusion time. We show that this is a signature of diffusion restricted in the intracellular space, from which cellular microstructural features such as soma’s and cell projections’ size can be estimated. Finally, by comparing water and metabolite diffusion time-dependencies, we attempt to disentangle the effect of intra/extracellular exchange and structural disorder of the extracellular space (both impacting water diffusion only). Our results suggest a relatively short intra/extracellular exchange time (~1-50 ms) and short-range disorder (still unclear if 1D or 2D/3D) most likely coming from the extracellular compartment. This work provides novel insights to help interpret water diffusion-time dependent measurements in terms of the underlying microstructure of gray matter and suggests that diffusion-time dependent measurements of intracellular metabolites may offer a new way to quantify microstructural restrictions in gray matter.

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3