Longitudinal stability of cortical grey matter measures varies across brain regions, imaging metrics, and testing sites in the ABCD study

Author:

Parsons Sam1,Brandmaier Andreas M.234,Lindenberger Ulman24,Kievit Rogier15

Affiliation:

1. Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands

2. Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany

3. Department of Psychology, MSB Medical School Berlin, Berlin, Germany

4. Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany

5. Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom

Abstract

Abstract Magnetic resonance imaging (MRI) is a vital tool for the study of brain structure and function. It is increasingly being used in individual differences research to examine brain-behaviour associations. Prior work has demonstrated low test-retest stability of functional MRI measures, highlighting the need to examine the longitudinal stability (test-retest reliability across long timespans) of MRI measures across brain regions and imaging metrics, particularly in adolescence. In this study, we examined the longitudinal stability of grey matter measures (cortical thickness, surface area, and volume) across brain regions, and testing sites in the Adolescent Brain Cognitive Development (ABCD) study release v4.0. Longitudinal stability ICC estimates ranged from 0 to .98, depending on the measure, parcellation, and brain region. We used Intra-Class Effect Decomposition (ICED) to estimate between-subjects variance and error variance, and assess the relative contribution of each across brain regions and testing sites on longitudinal stability. In further exploratory analyses, we examined the influence of parcellation used (Desikan-Killiany-Tourville and Destrieux) on longitudinal stability. Our results highlight meaningful heterogeneity in longitudinal stability across brain regions, structural measures (cortical thickness in particular), parcellations, and ABCD testing sites. Differences in longitudinal stability across brain regions were largely driven by between-subjects variance, whereas differences in longitudinal stability across testing sites were largely driven by differences in error variance. We argue that investigations such as this are essential to capture patterns of longitudinal stability heterogeneity that would otherwise go undiagnosed. Such improved understanding allows the field to more accurately interpret results, compare effect sizes, and plan more powerful studies.

Publisher

MIT Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3