Assessment of the macrovascular contribution to resting-state fMRI functional connectivity at 3 Tesla

Author:

Zhong Xiaole Z.12,Tong Yunjie3,Chen J. Jean124

Affiliation:

1. Rotman Research Institute at Baycrest, Toronto, ON, Canada

2. Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada

3. Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States

4. Department of Biomedical Engineering, University of Toronto, Toronto, ON, Canada

Abstract

Abstract In resting-state functional magnetic resonance imaging (rs-fMRI) functional connectivity (FC) mapping, temporal correlation is widely assumed to reflect synchronized neural-related activity. Although a large number of studies have demonstrated the potential vascular effects on FC, little research has been conducted on FC resulting from macrovascular signal fluctuations. Previously, our study found (Tong, Yao, et al., 2019) a robust anti-correlation between the fMRI signals in the internal carotid artery and the internal jugular vein (and the sagittal sinus). The present study extends the previous study to include all detectable major veins and arteries in the brain in a systematic analysis of the macrovascular contribution to the functional connectivity of the whole-gray matter (GM). This study demonstrates that: (1) The macrovasculature consistently exhibited strong correlational connectivity among itself, with the sign of the correlations varying between arterial and venous connectivity; (2) GM connectivity was found to have a strong macrovascular contribution, stronger from veins than arteries; (3) FC originating from the macrovasculature displayed disproportionately high spatial variability compared to that associated with all GM voxels; and (4) macrovascular contributions to connectivity were still evident well beyond the confines of the macrovascular space. These findings highlight the extensive contribution to rs-fMRI blood-oxygenation level-dependent (BOLD) and FC predominantly by large veins, but also by large arteries. These findings pave the way for future studies aimed at more comprehensively modeling and thereby removing these macrovascular contributions.

Publisher

MIT Press

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3