Toward a Theory of Evolution Strategies: Self-Adaptation

Author:

Beyer Hans-Georg1

Affiliation:

1. University of Dortmund Department of Computer Science Systems Analysis Research Group D-44221 Dortmund Germany

Abstract

This paper analyzes the self-adaptation (SA) algorithm widely used to adapt strategy parameters of the evolution strategy (ES) in order to obtain maximal ES performance. The investigations are concentrated on the adaptation of one general mutation strength σ (called σSA) in (1, λ) ESs. The hypersphere serves as the fitness model. Starting from an introduction to the basic concept of self-adaptation, a framework for the analysis of σSA is developed on two levels: a microscopic level, concerning the description of the stochastic changes from one generation to the next, and a macroscopic level, describing the evolutionary dynamics of the σSA over time (generations). The σSA requires the fixing of a new strategy parameter, known as the learning parameter. The influence of this parameter on ES performance is investigated and rules for its tuning are presented and discussed. The results of the theoretical analysis are compared with ES experiments; it will be shown that applying Schwefel's τ-scaling rule guarantees the linear convergence order of the ES.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3