FDA -A Scalable Evolutionary Algorithm for the Optimization of Additively Decomposed Functions

Author:

Mühlenbein Heinz1,Mahnig Thilo1

Affiliation:

1. Theoretical Foundation GMD Lab. Real World Computing Partnership GMD FZ Informationstechnik 53754 St. Augustin, Germany

Abstract

The Factorized Distribution Algorithm (FDA) is an evolutionary algorithm which combines mutation and recombination by using a distribution. The distribution is estimated from a set of selected points. In general, a discrete distribution defined for n binary variables has 2n parameters. Therefore it is too expensive to compute. For additively decomposed discrete functions (ADFs) there exist algorithms which factor the distribution into conditional and marginal distributions. This factorization is used by FDA. The scaling of FDA is investigated theoretically and numerically. The scaling depends on the ADF structure and the specific assignment of function values. Difficult functions on a chain or a tree structure are solved in about O(n√n) operations. More standard genetic algorithms are not able to optimize these functions. FDA is not restricted to exact factorizations. It also works for approximate factorizations as is shown for a circle and a grid structure. By using results from Bayes networks, FDA is extended to LFDA. LFDA computes an approximate factorization using only the data, not the ADF structure. The scaling of LFDA is compared to the scaling of FDA.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Reference2 articles.

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3