Empirical Studies of the Genetic Algorithm with Noncoding Segments

Author:

Wu Annie S.1,Lindsay Robert K.2

Affiliation:

1. Artificial Intelligence Laboratory University of Michigan Ann Arbor, MI 48109-2110

2. Mental Health Research Institute University of Michigan Ann Arbor, MI 48109

Abstract

The genetic algorithm (GA) is a problem-solving method that is modeled after the process of natural selection. We are interested in studying a specific aspect of the GA: the effect of noncoding segments on GA performance. Noncoding segments are segments of bits in an individual that provide no contribution, positive or negative, to the fitness of that individual. Previous research on noncoding segments suggests that including these structures in the GA may improve GA performance. Understanding when and why this improvement occurs will help us to use the GA to its full potential. In this article we discuss our hypotheses on noncoding segments and describe the results of our experiments. The experiments may be separated into two categories: testing our program on problems from previous related studies, and testing new hypotheses on the effect of noncoding segments.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Dispatching Strategies for Semiconductor Manufacturing Facilities with Genetic Programming;Proceedings of the Genetic and Evolutionary Computation Conference;2023-07-12

2. Evolving Neural Network CMAC and its Applications;Informatica;2019-06-15

3. Inference of compact nonlinear dynamic models by epigenetic local search;Engineering Applications of Artificial Intelligence;2016-10

4. Optimal design of laminated composite structures with ply drops using stacking sequence tables;Composite Structures;2014-01

5. Context-Dependent DNA Coding With Redundancy and Introns;IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics);2008-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3