Height Discordance in Monozygotic Females is not Attributable to Discordant Inactivation of X-linked Stature Determining Genes

Author:

Healey S.C.,Kirk K.M.,Hyland V.J.,Munns C.F.,Henders A.K.,Batch J.A.,Heath A.C.,Martin N.G.,Glass I.A.

Abstract

AbstractWe tested the hypothesis that X-linked genes determining stature which are subject to skewed or non-random X-inactivation can account for discordance in height in monozygotic female twins. Height discordant female monozygotic adult twins (20 pairs) were identified from the Australian Twin Registry, employing the selection criteria of proven monozygosity and a measured height discordance of at least 5 cm. Differential X-inactivation was examined in genomic DNA extracted from peripheral lymphocytes by estimating differential methylation of alleles at the polymorphic CAG triplet repeat of the Androgen receptor gene (XAR). There were 17/20 MZ pairs heterozygous at this locus and informative for analysis. Of these, 10/17 both had random X-inactivation, 5/17 showed identical X-inactivation patterns of non random inactivation and 2/17 (12%) showed discordant X-inactivation. There was no relationship between inactivation patterns and self-report chorionicity. We conclude that non-random X-inactivation does not appear to be a major contributor to intra-pair height discordance in female MZ twins.

Publisher

Cambridge University Press (CUP)

Subject

Genetics (clinical),Obstetrics and Gynecology,Pediatrics, Perinatology and Child Health

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiple Pregnancies;Benirschke's Pathology of the Human Placenta;2021-12-08

2. On the origin of zygosity and chorionicity in twinning: evidence from human in vitro fertilization;Journal of Assisted Reproduction and Genetics;2021-08-16

3. Embryonic left-right separation mechanism allows confinement of mutation-induced phenotypes to one lateral body half of bilaterians;American Journal of Medical Genetics Part A;2013-10-29

4. Chapter 25 Multiple Pregnancies;Pathology of the Human Placenta;2012

5. Multiple Pregnancies;Pathology of the Human Placenta;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3