Regionally Specified Human Neural Progenitor Cells Derived from the Mesencephalon and Forebrain Undergo Increased Neurogenesis Following Overexpression of ASCL1

Author:

Kim Hyun-Jung123,McMillan Erin1,Han Fabin1,Svendsen Clive N.145

Affiliation:

1. Department of Anatomy, University of Wisconsin-Madison, Madison, Wisconsin, USA

2. Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA

3. Department of Medicine, University of California-San Diego, California, USA

4. The Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA

5. The Stem Cell Regenerative Medicine Center, University of Wisconsin-Madison, Madison, Wisconsin, USA

Abstract

Abstract Human neural progenitor cells (hNPC) derived from the developing brain can be expanded in culture and subsequently differentiated into neurons and glia. They provide an interesting source of tissue for both modeling brain development and developing future cellular replacement therapies. It is becoming clear that hNPC are regionally and temporally specified depending on which brain region they were isolated from and its developmental stage. We show here that hNPC derived from the developing cortex (hNPCCTX) and ventral midbrain (hNPCVM) have similar morphological characteristics and express the progenitor cell marker nestin. However, hNPCCTX cultures were highly proliferative and produced large numbers of neurons, whereas hNPCVM divided slowly and produced fewer neurons but more astrocytes. Microarray analysis revealed a similar expression pattern for some stemness markers between the two growing cultures, overlaid with a regionally specific profile that identified some important differentially expressed neurogenic transcription factors. By overexpressing one of these, the transcription factor ASCL1, we were able to regain neurogenesis from hNPCVM cultures, which produced larger neurons with more neurites than hNPCCTX but no fully mature dopamine neurons. Thus, hNPC are regionally specified and can be induced to undergo neurogenesis following genetic manipulation. Although this restores neuronal production with a region-specific phenotype, it does not restore full neurochemical maturation, which may require additional factors.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3