Immune Properties of Human Umbilical Cord Wharton's Jelly-Derived Cells

Author:

Weiss Mark L.1,Anderson Cameron1,Medicetty Satish2,Seshareddy Kiran B.1,Weiss Rita J.1,VanderWerff Irene1,Troyer Deryl1,McIntosh Kevin R.3

Affiliation:

1. Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, USA

2. NeoStem, Inc., Boston, Massachusetts, USA

3. Cognate BioServices, Baltimore, Maryland, USA

Abstract

Abstract Cells isolated from Wharton's jelly, referred to as umbilical cord matrix stromal (UCMS) cells, adhere to a tissue-culture plastic substrate, express mesenchymal stromal cell (MSC) surface markers, self-renew, and are multipotent (differentiate into bone, fat, cartilage, etc.) in vitro. These properties support the notion that UCMS cells are a member of the MSC family. Here, the immune properties of UCMS cells are characterized in vitro. The overall hypothesis is that UCMS cells possess immune properties that would be permissive to allogeneic transplantation. For example, UCMS cells will suppress of the proliferation of “stimulated” lymphocytes (immune suppression) and have reduced immunogenicity (e.g., would be poor stimulators of allogeneic lymphocyte proliferation). Hypothesis testing was as follows: first, the effect on proliferation of coculture of mitotically inactivated human UCMS cells with concanavalin-A-stimulated rat splenocytes was assessed in three different assays. Second, the effect of human UCMS cells on one-way and two-way mixed lymphocyte reaction (MLR) assays was determined. Third, the expression of human leukocyte antigen (HLA)-G was examined in human UCMS cells using reverse transcription-polymerase chain reaction, since HLA-G expression conveys immune regulatory properties at the maternal-fetal interface. Fourth, the expression of CD40, CD80, and CD86 was determined by flow cytometry. Fifth, the cytokine expression of UCMS cells was evaluated by focused gene array. The results indicate that human UCMS cells inhibit splenocyte proliferation response to concanavalin A stimulation, that they do not stimulate T-cell proliferation in a one-way MLR, and that they inhibit the proliferation of stimulated T cells in a two-way MLR. Human UCMS cells do not inhibit nonstimulated splenocyte proliferation, suggesting specificity of the response. UCMS cells express mRNA for pan-HLA-G. UCMS cells do not express the costimulatory surface antigens CD40, CD80, and CD86. UCMS cells express vascular endothelial growth factor and interleukin-6, molecules previously implicated in the immune modulation observed in MSCs. In addition, the array data indicate that UCMS cells make a cytokine and other factors that may support hematopoiesis. Together, these results support previous observations made following xenotransplantation; for example, there was no evidence of frank immune rejection of undifferentiated UCMS cells. The results suggest that human UCMS will be tolerated in allogeneic transplantation. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3