Characterization of the Optimal Culture Conditions for Clinical Scale Production of Human Mesenchymal Stem Cells

Author:

Sotiropoulou Panagiota A.1,Perez Sonia A.1,Salagianni Maria1,Baxevanis Constantin N.1,Papamichail Michael1

Affiliation:

1. Cancer Immunology and Immunotherapy Center, Saint Savas Hospital, Athens, Greece

Abstract

Abstract Mesenchymal stem cells (MSCs) are multipotent cells defined by multilineage potential, ease to gene modification, and immunosuppressive ability, thus holding promise for tissue engineering, gene therapy, and immunotherapy. They exhibit a unique in vitro expansion capacity, which, however, does not compensate for the very low percentage in their niches given the vast numbers of cells required for the relative studies. Taking into consideration the lack of a uniform approach for MSC isolation and expansion, we attempted in this study, by comparing various culture conditions, to identify the optimal protocol for the large-scale production of MSCs while maintaining their multilineage and immunosuppressive capacities. Our data indicate that, apart from the quality of fetal calf serum, other culture parameters, including basal medium, glucose concentration, stable glutamine, bone marrow mononuclear cell plating density, MSC passaging density, and plastic surface quality, affect the final outcome. Furthermore, the use of basic fi-broblast growth factor (bFGF), the most common growth supplement in MSC culture media, greatly increases the proliferation rate but also upregulates HLA-class I and induces low HLA-DR expression. However, not only does this upregulation not elicit significant in vitro allogeneic T cell responses, but also bFGF-cultured MSCs exhibit enhanced in vivo immunosuppressive potential. Besides, addition of bFGF affects MSC multilineage differentiation capacity, favoring differentiation toward the osteogenic lineage and limiting neurogenic potential. In conclusion, in this report we define the optimal culture conditions for the successful isolation and expansion of human MSCs in high numbers for subsequent cellular therapeutic approaches.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3