Magnetic Resonance Imaging and Confocal Microscopy Studies of Magnetically Labeled Endothelial Progenitor Cells Trafficking to Sites of Tumor Angiogenesis

Author:

Arbab Ali S.1,Frenkel Victor2,Pandit Sunil D.3,Anderson Stasia A.4,Yocum Gene T.1,Bur Monica3,Khuu Hanh M.5,Read Elizabeth J.5,Frank Joseph A.1

Affiliation:

1. Experimental Neuroimaging Section, Laboratory of Diagnostic Radiology Research, National Institutes of Health, Bethesda, Maryland, USA

2. Radiology, Henry Ford Health System, Detroit, Michigan, USA

3. Molecular Imaging Laboratory, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA

4. National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA

5. Clinical Center, Department of Transfusion Medicine, National Institutes of Health, Bethesda, Maryland, USA

Abstract

Abstract AC133 cells, a subpopulation of CD34+ hematopoietic stem cells, can transform into endothelial cells that may integrate into the neovasculature of tumors or ischemic tissue. Most current imaging modalities do not allow monitoring of early migration and incorporation of endothelial progenitor cells (EPCs) into tumor neovasculature. The goals of this study were to use magnetic resonance imaging (MRI) to track the migration and incorporation of intravenously injected, magnetically labeled EPCs into the blood vessels in a rapidly growing flank tumor model and to determine whether the pattern of EPC incorporation is related to the time of injection or tumor size. Materials and Methods: EPCs labeled with ferumoxide–protamine sulfate (FePro) complexes were injected into mice bearing xenografted glioma, and MRI was obtained at different stages of tumor development and size. Results: Migration and incorporation of labeled EPCs into tumor neovasculature were detected as low signal intensity on MRI at the tumor periphery as early as 3 days after EPC administration in preformed tumors. However, low signal intensities were not observed in tumors implanted at the time of EPC administration until tumor size reached 1 cm at 12 to 14 days. Prussian blue staining showed iron-positive cells at the sites corresponding to low signal intensity on MRI. Confocal microcopy showed incorporation into the neovasculature, and immunohistochemistry clearly demonstrated the transformation of the administered EPCs into endothelial cells. Conclusion: MRI demonstrated the incorporation of FePro-labeled human CD34+/AC133+ EPCs into the neovasculature of implanted flank tumors.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 155 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3