Notch Signaling Induces Apoptosis in Primary Human CD34+ Hematopoietic Progenitor Cells

Author:

Chadwick Nicholas1,Nostro Maria Cristina2,Baron Martin1,Mottram Rachel1,Brady Gerard2,Buckle Anne-Marie1

Affiliation:

1. Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom

2. Epistem Ltd., Manchester, United Kingdom

Abstract

Abstract Notch signaling regulates diverse cell fate decisions during development and is reported to promote murine hematopoietic stem cell (HSC) self-renewal. The purpose of this study was to define the functional consequences of activating the Notch signaling pathway on self-renewal in human HSCs. Subsets of human umbilical cord blood CD34+ cells were retrovirally transduced with the constitutively active human Notch 1 intracellular domain (N1ICD). N1ICD-transduced cells proliferated to a lesser extent in vitro than cells transduced with vector alone, and this was accompanied by a reduction in the percentage and absolute number of CD34+ cell populations, including CD34+Thy+Lin− HSCs. Ectopic N1ICD expression inhibited cell cycle kinetics concurrent with an upregulation of p21 mRNA expression and induced apoptosis. Transduction of cells with HES-1, a known transcriptional target of Notch signaling and a mediator of Notch function, had no effect on HSC proliferation, indicating that the mechanism of the Notch-induced effect is HES-1-independent. The results of this study show that activation of the Notch signaling pathway has an inhibitory effect on the proliferation and survival of human hematopoietic CD34+ cells populations. These findings have important implications for strategies aimed at promoting self-renewal of human HSCs.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3