Progenitor Cells from the Porcine Neural Retina Express Photoreceptor Markers After Transplantation to the Subretinal Space of Allorecipients

Author:

Klassen Henry12,Kiilgaard Jens Folke3,Zahir Tasneem2,Ziaeian Boback1,Kirov Ivan1,Scherfig Erik3,Warfvinge Karin4,Young Michael J.2

Affiliation:

1. Stem Cell Research, Children's Hospital of Orange County, Orange, California, USA

2. Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA

3. Eye Department, Rigshospitalet and Eye Pathology Institute, Copenhagen University, Copenhagen, Denmark

4. Wallenberg Retina Center, Department of Ophthalmology, Lund University, Lund, Sweden

Abstract

Abstract Work in rodents has shown that cultured retinal progenitor cells (RPCs) integrate into the degenerating retina, thus suggesting a potential strategy for treatment of similar degenerative conditions in humans. To demonstrate the relevance of the rodent work to large animals, we derived progenitor cells from the neural retina of the domestic pig and transplanted them to the laser-injured retina of allorecipients. Prior to grafting, immunocytochemical analysis showed that cultured porcine RPCs widely expressed neural cell adhesion molecule, as well as markers consistent with immature neural cells, including nestin, Sox2, and vimentin. Subpopulations expressed the neurodevelopmental markers CD-15, doublecortin, β-III tubulin, and glial fibrillary acidic protein. Retina-specific markers expressed included the bipolar marker protein kinase Cα and the photoreceptor-associated markers recoverin and rhodopsin. In addition, reverse transcription-polymerase chain reaction showed expression of the transcription factors Dach1, Hes1, Lhx2, Pax6, Six3, and Six6. Progenitor cells prelabeled with vital dyes survived as allografts in the subretinal space for up to 5 weeks (11 of 12 recipients) without exogenous immune suppression. Grafted cells expressed transducin, recoverin, and rhodopsin in the pig subretinal space, suggestive of differentiation into photoreceptors or, in a few cases, migrated into the neural retina and extended processes, the latter typically showing radial orientation. These results demonstrate that many of the findings seen with rodent RPCs can be duplicated in a large mammal. The pig offers a number of advantages over mice and rats, particularly in terms of functional testing and evaluation of the potential for clinical translation to human subjects. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3