Tethered Epidermal Growth Factor Provides a Survival Advantage to Mesenchymal Stem Cells

Author:

Fan Vivian H.12,Au Ada1,Tamama Kenichi3,Littrell Romie1,Richardson Llewellyn B.4,Wright John W.1,Wells Alan3,Griffith Linda G.15

Affiliation:

1. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

2. Harvard School of Dental Medicine, Boston, Massachusetts, USA

3. Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

4. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

5. Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

Abstract

Abstract MSC can act as a pluripotent source of reparative cells during injury and therefore have great potential in regenerative medicine and tissue engineering. However, the response of MSC to many growth factors and cytokines is unknown. Many envisioned applications of MSC, such as treating large defects in bone, involve in vivo implantation of MSC attached to a scaffold, a process that creates an acute inflammatory environment that may be hostile to MSC survival. Here, we investigated cellular responses of MSC on a biomaterial surface covalently modified with epidermal growth factor (EGF). We found that surface-tethered EGF promotes both cell spreading and survival more strongly than saturating concentrations of soluble EGF. By sustaining mitogen-activated protein kinase kinase-extracellular-regulated kinase signaling, tethered EGF increases the contact of MSC with an otherwise moderately adhesive synthetic polymer and confers resistance to cell death induced by the proinflammatory cytokine, Fas ligand. We concluded that tethered EGF may offer a protective advantage to MSC in vivo during acute inflammatory reactions to tissue engineering scaffolds. The tethered EGF-modified polymers described here could be used together with structural materials to construct MSC scaffolds for the treatment of hard-tissue lesions, such as large bony defects. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Reference92 articles.

Cited by 246 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3